CoinPool: efficient off-chain payment pools for Bitcoin

Gleb Naumenko
gleb@thelab31.xyz

ABSTRACT

CoinPool is a new multi-party construction to improve Bit-
coin onboarding and transactional scaling by orders of mag-
nitude.

CoinPool allows many users to share a UTXO and make
instant off-chain transfers inside the UTXO while allowing
withdrawals at any time without permission from other users.

In-pool accounts can be used for advanced protocols (e.g.,
payment channels). Connecting them to other CoinPool in-
stances, or even to the Lightning Network, makes in-pool
funds highly liquid.

CoinPool construction relies on SIGHASH _GROUP,
SIGHASH_ANYPREVOUT and OP_-MERKLESUB
changes to Bitcoin. It also assumes a high degree of interac-
tivity between pool participants.

1 INTRODUCTION

While Bitcoin has established itself as a store-of-value, it is
yet to be explored whether it can enable high transaction
throughput without sacrificing security. Among many propos-
als [7, 9, 19] to achieve this goal, most attention was drawn
to the Lightning Network [17].

Once LN matures and expands, its scalability and usability
may face the following challenges:

e while technically two-party payment channels can exist
off-chain forever, in practice they suffer from liquidity
depletion bounding their lifetime

e two-party payment channels occupy significant block
space per user when they get opened/closed, setting a
bound on the number of LN users concurrently

e multi-hop trust-minimized routing may cause even
more channel closings (in-flight HTLCs leading to on-
chain claims)

Based on the lessons learned from the design and operation
of the LN and other protocols, we propose CoinPool: a new
scalability construction based on sharing UTXO ownership.
It provides the following features:

e users can transfer their funds off-chain inside the pool

e every user can unilaterally exit a pool at any time
without permission from other users

e in-pool accounts could be used for advanced contracts
(e.g., payment channels)

e in-pool accounts could be used to transact with users
of the LN or another CoinPool instance

2 BACKGROUND

Bitcoin is a peer-to-peer electronic cash system, in which all
transactions are verified by users running node software. To
let everyone participate in the most secure way and with

Antoine Riard
antoine@thelab31.xyz

minimized trust, Bitcoin limits transaction throughput to
cap system requirements.

2.1 Bitcoin Transactions

Bitcoin addresses and the corresponding amounts define the
state of the funds. Every address refers to a challenge to be
satisfied to use a corresponding amount. Satisfying the most
basic challenge requires a digital signature corresponding to
a given public key.

Bitcoin Script is a language for expressing challenges that
lock the coins. Bitcoin Script was designed to ensure low
verification cost and enable running a Bitcoin node on low-
tier hardware.

The main building block in Bitcoin Script is an opcode. For
example, OP_CHECKSIG is used for signature verification.
Other opcodes allow locking funds for a certain time, or until
a preimage is revealed for a given hash.

Every transaction consists of the following components:

e inputs referring to the coins being spent

e scripts containing the rules locking the coins (script-
PubKey)

signatures satisfying the scripts (scriptSig)

outputs referring to the new rules locking those coins

A script and a corresponding solution (e.g., a digital sig-
nature) together are called a witness, as they allow to check
transaction validity but not to determine transaction effects.

When Alice sends her coins to Bob, she crafts a transaction
proving her ownership of a certain Unspent Transaction
Output (UTXO). Then Alice broadcasts this transaction
in the Bitcoin network to get it recorded in the Bitcoin
blockchain.

2.1.1 Sighashes, SIGHASH_GROUP and
SIGHASH_ANYPREVOUT. A sighash flag is part of a
signature indicating which part of the transaction body is
signed. For example, a signature could cover all inputs and
outputs (SIGHASH_ALL) or all input and one output
(SIGHASH_ONE). These different modes of operation
become useful in multi-key settings.

The following sighash flags were proposed to extend Bitcoin
validation rules:

e SIGHASH _GROUP to enable bundling inputs with
any number of outputs

e SIGHASH_ANY PREVOUT to avoid committing to
outputs being spent

2.1.2 Covenants. Bitcoin Script opcodes constraining spend-
ing transactions in terms of scriptPubKeys of their outputs
are called covenants [10]. For example, Alice can send funds
to Bob, which Bob can only spend to a specific address. Alice

enforces this by asking Bob to construct his scriptPubKey in
a certain way; and sends to that address.

Covenants are useful for protocols in which several users
share a single UTXO. With this feature, users can be sure
that they will receive a fraction of coins when the UTXO is
spent.

2.1.3 Taproot. Taproot is a UTXO format, which could be
spent by satisfying one of the alternative conditions, repre-
sented as a Merkle tree. Spending a Taproot UTXO involves
revealing a scriptPubKey, a corresponding Merkle branch,
and a scriptSig.

In a multi-party setting, protocol participants may choose
to tweak the Merkle root of a tree with an aggregation of
their public keys, to avoid revealing the tree if they agree on
payment details at the spending time. This aggregation is
called an internal pubkey.

2.2 Payment channels

Off-chain solutions increase Bitcoin throughput at the cost
of additional assumptions.

Payment channel protocols allow making multiple pay-
ments within a collateral capacity without recording a trans-
action in the blockchain (except for channel opening and clos-
ing transactions). Instead, channel counterparties pre-sign
Bitcoin transactions and keep them locally. These transac-
tions appear in the blockchain to enforce the latest channel
state (balances) only when channels get closed.

This optimization comes with a new threat model. Users
have to monitor the chain (and act in case of misbehavior)
so that their counterparty cannot quietly settle an outdated
state. This requirement contrasts with regular Bitcoin pay-
ments, in which users monitor the chain only at payment
receiving time. This new threat model comes with an ex-
tended set of assumptions [1, 8, 18].

2.2.1 Routing and the Lightning Network. Payment channels
can be connected in a graph to enable payments between
users not connected via a direct channel. The process of
forwarding payments is called routing.

Lightning Network is an instance of a Payment Channel
Network based on two-party channels. It is the most widely
used off-chain protocol, with thousands of bitcoins locked in
the network.

2.3 Off-chain update mechanisms

An update mechanism is what invalidates a state of a payment
channel (or similar construction) while transitioning to a new
state without touching the blockchain.

Currently, payment channels rely on LN-Penalty [17]: a
payer discloses a secret revoking a previous set of pre-signed
transactions. If a revoked transaction is published, the payee
can use the disclosed secret to confiscate the payer’s balance.

LN-Penalty does not work for N-channel users because 1)
it requires storing all historical pre-signed transactions and
revocation secrets, which does not scale well with the number

of users; 2) distributing confiscated balance across N users
remains an open game-theoretic question.

Eltoo is an alternative update mechanism [3] that over-
comes these issues by introducing state ordering at the Bit-
coin Script level, once SIGHASH_ANY PREVOUT is de-
ployed.

3 OFF-CHAIN SCALING

When it comes to scaling Bitcoin with off-chain protocols,
two factors matter: onboarding and transactional scaling.
Let’s now analyze the LN in light of these two metrics.

3.1 Onboarding scaling

This metric defines how many users can co-exist off-chain,
considering throughput limits at the Bitcoin base layer.
Let’s assume the following properties of the LN:

e channel lifetime is T'days

e every time a user closes a channel, they open a new
one in the same transaction

e every block can contain at most 3000 transactions

Then, T'days * 144blocks/day * 3000txs/block is the upper
bound for a number of co-existing channels. If an average
channel lifetime is 30 days, at most 13,000,000 channels could
exist simultaneously in a secure way.

3.2 Transactional scaling

This metric defines how many transfers can be performed off-
chain per on-chain transaction, considering the properties
of the off-chain system.

The off-chain/on-chain ratio in the LN is limited because
of the liquidity issues:

e Routing limits the capabilities to pay and receive pay-
ments in the network, forcing users to go on-chain.

e Channel owners have different goals while maintaining
a payment channel *.

4 COINPOOL:
SCALABILITY/SECURITY MODEL

CoinPool is a trust-minimized multi-user (N > 2) off-chain
protocol that provides high onboarding and transactional
scaling at the cost of high interactivity.

Balances in the pool are organized in a Taproot tree, where
leaves ensure every user can spend their balance immediately
without permission from other users. A user cannot lose
balance or be forced to leave the pool.

To make sure a withdrawing user preserves the state of
the remaining CoinPool, unilateral withdrawals must be re-
stricted, so that a user cannot withdraw more than their
balance, and the rest of the tree should remain unmodified
(see Fig. 1).

Off-chain transfers work by spending a CoinPool output
into new CoinPool output of arbitrary state via replacing

1For example, if one channel counterparty raises routing fees over the
channel, it may become prohibitively expensive for another counter-
party to rebalance the channel.

! Unilateral withdraw leaves.
i A pre-signed component |
from the rest of the pool
restricts the spending.

Used for returning to
i off-chain operations
after a unilateral

CoinPool
output

i Other pool participants must
! make sure this includes !
! OP_MERKLESUBand |
i OP_CHECKSIG over their :
aggregate key

v

Internal aggregate
key

Used for Eltoo'ed
i cooperative pool
update: :

Alice Bob Carol

Aggregate key

Figure 1: CoinPool is organized as a tree, in which
leaves correspond to user balances and enable uni-
lateral withdrawals. Two extra spending paths are
used for cooperative pool operations.

pre-signed transactions. This transition must be authorized
by all participants’ aggregate public key and with the use of
Eltoo.

CoinPool balances can be locked with arbitrary scripts,
which allows them to be used as payment channels. This
allows 1) connecting CoinPool instances to each other and
to the LN; 2) not to ask permission for balance-level state
changes from the rest of the pool, which improves scalability *
and privacy. Other pool-level actions (for example, transfers
between balances) do not affect the operation of these in-pool
payment channels.

4.1 Enabling any-order exits in a scalable
way with OP_MERKLESUB,
SIGHASH ANYPREVOUT and
SIGHASH GROUP

The ability to exit a pool at any time without permission is
a fundamental CoinPool feature.

Two primitives are used to restrict a withdrawing partic-
ipant from violating rules: SIGHASH _GROUP to restrict
the balance, and OP_M ERK LESU B to maintain the tree,
which we present shortly (but also uses SIGHASH_GROUP
and SIGHASH_ANY PREVOUT) 3.

Now, we present OP_.MERKLESUB.

4.1.1 Enforcing tree transitions with OP_MERKLESUB. Ev-
ery pool withdrawal results in two new UTXOs: one
for the exiting user, and one for the rest of the pool.
OP_MERKLESUB is a new opcode enforcing that the
new CoinPool UTXO is equal to the UTXO this transaction
is spending, but:

2In the next section, we will show that by default, such actions require
authorization from all pool participants

3These restrictions could be also achieved by pre-signing all possible
sequences of state transitions (producing, storing and exchanging all
these signatures), which scales poorly (factorial) with the number of
participants. For balances specifically, another potential solution is
to enforce all balances to be equal, which would significantly reduce
CoinPool usability.

i Cooperate to replace
| pre-signed TXs without |
\ __going on-chain i

i Carol withdraws
i on-chain unilaterally

CoinPool

CoinPool

CoinPool

state N

state N+2

state N+1

Alice: 1 BTC Alice: 1 BTC Alice: 1 BTC

Bob: 1 BTC Bob: 0.5 BTC Bob: 0.5 BTC

Carol: 1 BTC Carol: 1.5 BTC

Figure 2: CoinPool: users can transfer funds within
a single UTXO and withdraw at any time.

e user’s leaf is subtracted from the Merkle tree
e user’s pubkey is subtracted from the internal pubkey

At the transaction verification level, these rules require
Merkle tree subtraction and elliptic curve point addition.
This scheme also relies on:

e SIGHASH_ANY PREVOUT allowing signatures to
not commit to a particular input

e SIGHASH _GROUP allowing signatures to not com-
mit to a particular output

All these features combined ensure any-order pool exits
without authorizing every possible sequence of exits via a
factorial number of signatures.

4.2 Enabling leaf-level payment channels
with SIGHASH ANYPREVOUT

Using CoinPool leaves as two-party payment channels or
similar protocols largely increases the scalability of CoinPool.

This feature requires SIGHASH_ANY PREVOUT, be-
cause otherwise transactions enforcing leaf-level payment
channels would have to commit to a particular CoinPool
state hash, which means every state change of the pool would
invalidate these payment channels.

5 COINPOOL OPERATIONS

CoinPool instance state is defined by a set of public keys
and the associated balances, which are debited and credited
during pool operation.

This state is maintained by an on-chain UTXO and a set
of pre-signed transactions. Pre-signed transactions are the
only objects aware of user balances: they restrict users from
exceeding balances while withdrawing.

Off-chain transfers between pool accounts require replacing
pre-signed transactions with new ones. All pool participants
have to approve these transitions (see Fig. 2). If an update
reduces the balance of a user unexpectedly, this user should
refuse to authorize the update.

If an outdated transaction is published on-chain, partic-
ipants should challenge it to make sure their funds remain
safe. This action requires all pool participants to store the
pool state locally.

Unilateral

At Setup, only this | [Update #0| ___
i TX goes on-chain >

....... Withdraw TX | i
CoinPool 1 I vithdraw TX
output
,,,,,,, Withdraw TX

Pre-

Q_, Setup TX | —|CoinPool
output

Figure 3: Pool Setup: Update #0 TX and Withdraw
TXs are signed, then Setup TX is signed and sub-
mitted on-chain.

The CoinPool UTXO usually gets re-spent on-chain when
one of the participants leaves the pool. This action does not
require permission from the rest of the pool.

The distribution of the balances, and even the existence
of the pool, is hidden from external observers.

5.1 Pool Setup

Bitcoin users initiate a CoinPool instance by crafting a Setup
transaction, an Update transaction with an initial state;
and one Withdraw transaction spending an Update out-
put for every user (see Fig. 3).

To make sure funds don’t get frozen, transactions are
signed in reverse topological order.

Inputs of a Setup transaction correspond to users’ con-
tributions, and the only output funds the CoinPool state.
This output can be spent by all participants together uncon-
ditionally. This output is called pre-CoinPool: it does not
allow unilateral withdrawals yet (an already signed Update
transaction must be published first).

We will now explain the construction of Update and With-
draw transactions.

5.2 Pool Update (off-chain)

Initiating a transfer to another pool balance or changes to
the lock conditions (key rotation, adding a timelock) requires
proposing an Update transaction spending pre-CoinPool
UTXO into new off-chain output. If another update already
existed on top of the pre-CoinPool UTXO, it should be
replaced via Eltoo.

After verifying the correctness of the transition, other
participants authorize this update by 1) generating/signing
a new set of Withdraw transactions; 2) signing the proposed
Update transaction (see Fig. 4).

The output of the Update transaction is a CoinPool Tap-
root output with the following spending paths:

e Key path remains the same as in the UTXO being spent
and requires authorization from all pool participants
cooperatively

e Script path represents a tree ensuring: 1) every user
has a leaf allowing them to withdraw at any time
without permission, although in a restricted way (see

Update #0|
X

Pre-

Setup TX CoinPool
output

i Eltooisusedto |

place prevtous ™>: Withdraw TX |
CoinPool } 1™ \ithdraw TX
output
........ Withdraw TX

Figure 4: CoinPool Update: Users cooperate to pro-
duce a new Update transaction enforcing pool state
transition. Withdraw transactions should be invali-
dated by rotating scripts.

QP9

next Section); 2) one Eltoo-enabled leaf based on the
aggregate public key enables off-chain. transitions

Pool participants must force each other to rotate their with-
draw scripts, to invalidate existing Withdraw pre-signatures,
which otherwise may be used to double-spend honest users.

Once a new Update transaction and a new set of Withdraw
transactions are generated and signed, this update is finalized.
No recording in the blockchain is required.

5.3 Pool Withdrawal

Every pool participant can withdraw their balance from
the pool at any time. Spending a Withdraw transaction
always involves using a private component by the leaf owner
and a pre-signed component signed by other participants.

First, a withdrawing participant submits the latest Update
transaction.

Then, the contestation delay takes place: a withdrawing
user should wait for a certain number of blocks before submit-
ting a Withdraw transaction. This delay lets other users react
if the submitted Update transaction was not the latest. This
delay is enforced in the pre-signed component of Withdraw
transactions.

Once the delay is over, a Withdraw transaction spends the
CoinPool UTXO into two outputs: one for the withdrawal
(see Fig. 5), and one for the remaining pool. In addition to
satisfying the user’s scriptPubKey content of the leaf, the
transaction must satisfy the following;:

(1) Second output is a Taproot output with the same tree
from the UTXO being spent, but the withdrawing user
is excluded from both key and script paths.

(2) A point and a leaf removed from the tree should corre-
spond to the withdrawing user’s point and leaf.

(3) First output amount should correspond to the balance
assigned to the leaf.

(4) Second output amount should equal the previous pool
amount without the second output amount.

4This can’t be done via key path. Key path in the CoinPool output
from an Update transaction is not supposed to be spent at all, it is
only used for OP_MERKLESUB.

! Rules over these outputs
are enforced by :

! OP_MERKLESUBand | ’ .
| 0 i iCarol's Withdraw ;
SIGHASH_GROUP. { pre-sigs remain |

; i valid
CoinPool r v
output]
CoinPool S
K
Bob)

output
---------- '
,,,,,,,,, » Withdraw TX ¢ . ’
_________ . .

Pre- : :
CoinPool | | Contestation delay to :
output /| let other users react if |

i Update is outdated

Figure 5: CoinPool Withdraw: Bob leaves the pool
by using his private key and a pre-signed Withdraw
component from other participants. Then, Carol con-
siders leaving with an existing pre-signed transac-
tion.

(1) and (2) are enforced via OP_M ERKLESU B, which
must be satisfied to spend the UTXO. Pool participants force
each other to always include OP_MERKLESUB in their
leaves.

(3) and (4) are enforced via SIGHASH_GROUP flag
applied to the pre-signed component of the Withdraw trans-
action. Pool participants force each other to always include
OP_CHECKSIG over the aggregate key in their leaves and
pre-sign these authorizations only with SIGHASHcROU P.

Users can withdraw from the pool one after each other.
In that case, no Update transaction will be recorded in the
blockchain, but the second user would still have to wait during
the contestation delay after the first user °.

5.4 Pool Snapshot

Once a user withdraws from the pool, the remaining partici-
pants can either continue withdrawing non-cooperatively or
return to off-chain pool operations. For the latter, a Snap-
shot transaction must be confirmed on-chain. It ensures
that outdated Withdraw pre-signed components are invali-
dated.

A Snapshot transaction takes one input from the key path
of the UTXO produced by the last Withdraw transaction
and spends it into one output, identical to the Setup output.

Similarly to Setup, participants should produce all required
Withdraw and Update transactions spending a Snapshot
output, before authorizing the Snapshot transaction.

5.5 Expanding the pool

To add a new user to the CoinPool instance, current partici-
pants spend the pool UTXO into new UTXO which includes
the new user (both in key path and script path), via an on-
chain transaction °. Similarly to Setup, all required Withdraw
and Update transactions should be generated.

51t doesn’t provide additional security against the second withdrawal,
but it significantly simplifies the protocol design.

SThis transaction must be recorded on-chain, because otherwise new
user can’t be secure.

t
; Setup TX equivalent.
i Generate a new Update TX and
replace Withdraw TXs. :
Pre- iOnce confirmed on-chain, off-chain

CoinPool : operations can continue.
output L

CoinPool

output

Figure 6: Coinpool Snapshot: once Bob withdrawn,
a Snapshot transaction should be produced and con-
firmed on-chain in the same way as Setup. Then,
off-chain operations can proceed.

This action could use a cooperative Update transaction or
a Snapshot transaction. A transaction could be expanded to
include a contribution from the new user.

5.6 Optimizations

Going on-chain usually happens at unilateral Withdraw, or
while onboarding new users. These actions can be aggregated
with each other or with other updates. One transaction can
include Alice leaving the pool, adding Bob to the pool, and
transferring funds from Carol to Dave.

Cooperative on-chain action is always cheaper in fees than
unilateral Withdraw, because transaction witness does not
contain Merkle path, and thus, is smaller and cheaper. For
off-chain, it just avoids producing a separate signature for a
transfer.

6 UPLIFTING OFF-CHAIN
PROTOCOLS

CoinPool leaves could be used for advanced protocols (pay-
ment channels, Discreet Log Contracts [6], CoinSwaps [12]).
This is one of the key scalability improvements CoinPool
provides, which we call uplifting. Those protocols can operate
inside the pool without affecting the entire pool state (see
Fig. 7).

An uplifted protocol instance is secure for all participants
only if all of them are involved in authorizing pool-wide ac-
tions: signing cooperative updates and pre-signing unilateral
withdrawals. Otherwise, a leaf can be modified without the
user’s consent.

Activity within an uplifted protocol instance (at a leaf-
level) remains unknown to non-involved pool participants.

An uplifted protocol instance adheres to the same threat
model, as the non-uplifted version. A user has to:

e monitor the blockchain to ensure no outdated state is
submitted [1]

e make sure their reaction transactions could be timely
included in the blockchain [8, 18]

Additionally, pool timelocks (in Withdraw transactions)
should be accounted for while picking timelocks for uplifted
protocol instances.

CoinPool CoinPool

state N

Alice: 1 BTC

state N
i Global pool update is |
! unnecessary for state !

Alice: 1 BTC
i changes in uplifted
Bob: 1 BTC ; protocols | Bob: 0.5 BTC
Carol-Dave: 4 _ Carol-Dave:
1BTC-1BTC ~ \1.5BTC -0.5BTC,

Figure 7: Uplifting: a leaf-level payment channel can
be updated without affecting the rest of the pool.

Leaf-level payment channels may be used to route pay-
ments to the Lightning Network, or another CoinPool in-
stance. To achieve this, one of the payment channel par-
ticipants must have another payment channel in the second
system. This user would take the risks corresponding to cross-
system transfers, similarly to how routing nodes in the LN
take the risk for forwarding payments through their channels.

These payments have to be authorized only by leaf partic-
ipants and remain unknown to the rest of the pool.

7 DISCUSSION

7.1 Economic soundness of multi-party
Eltoo

Eltoo assumes publishing a reaction transaction in case a
counterparty confirmed an outdated transaction on-chain.

In a two-party setting, there is always an attacker and a
victim. In N-party protocols, there could be M < N victims.
It is unclear how victims coordinate the reaction, especially
in terms of reaction transaction fees.

A protocol instance (e.g., CoinPool) may have an extra
leaf (or a standalone UTXO) with contributions from all pool
participants for this reason. Additionally, it can encourage
honest pool participants to be first at reacting by offering a
reward paid from this additional collateral.

7.2 Off-chain Cancellation of Withdraw
Transactions

Once a unilateral withdrawal was confirmed on-chain, contin-
uing pool off-chain operations requires confirming a Snapshot
transaction, which results in extra on-chain footprint and
coordination.

A Snapshot transaction invalidates Withdraw transactions,
because otherwise, if Alice withdraws right after Bob, Bob re-
mains in the Eltoo leaf of Alice’s remaining pool output. The
remaining pool participants must not rely on Bob contesting
further updates.

Alternatively, this can be achieved by extending Bitcoin
Script rules to function across outputs. More specifically,
pool participants should be able to force (via a pre-signed
component) Withdraw transactions to use an internal pubkey

from their first output (the remaining pool) as a condition
locking the second output (timelocked UTXO of a withdraw-
ing participant), so that withdrawing users are excluded from
further contesting.

7.3 Interactivity requirement

CoinPool updates require the participation of all pool par-
ticipants. This sets an upper bound on the number of pool
users. The main bottlenecks are:

e online: downtime of a single participant halts pool
updates

e DoS-resistance: malicious participants proposing an
excessive number of updates; or denying to authorize
any updates

e resources: latency and bandwidth/space required to
coordinate updates

Interactivity requirement also makes cold storage security
approach impossible for the keys authorizing updates.
To overcome these issues, we suggest several solutions:

e applying reputation systems to select pool participants
for DoS-resistance

e replicated key hosting for better availability

e kicking-out at the pool level: forcing a user to withdraw
after inactivity

e in-pool fragmentation: updates in one branch without
authorization from another branches

7.4 Withdraw witness size

Unilateral Withdraw transactions have large witness sizes
because they require revealing a Merkle branch containing
the withdrawing user’s leaf. Witness size in this case grows
logarithmically with the pool size.

This results in the inefficient use of Bitcoin throughput,
and high fees for the withdrawing user.

We suggest the following optimizations:

(1) Sharing leaves across several users via leaf-level condi-
tions enabled by Bitcoin Script
(2) A more efficient accumulator for inclusion proving [5].

7.5 Dynamic Membership

CoinPool does not allow onboarding new users’ without an
on-chain transaction. This results in reduced scalability and
usability of CoinPool.

Onboarding new users off-chain securely is hard, because
existing pool participants can cooperate to trick a new user
into believing new user’s funds are safe, and then double-
spending via free-to-produce state fork.

We leave exploring this problem for future research.

7.6 Confidentiality enhancements

Even though CoinPool hides most of the activity from the
outsider, an in-pool observer can track all in-pool activities
unless they happen at the leaf level.

Anonymity can be increased by setting a lower bound on
in-pool balance and a timelock to prevent a spy from leaving

the pool immediately after entering, or via periodic in-pool
mixing.

8 COINPOOL APPLICATIONS
8.1 Trading Pools

CoinPool can facilitate trading or liquidity management (for
example, between a broker firm and its clients) more effi-
ciently than the LN or other systems, due to better confiden-
tiality and funds velocity.

Pool policies could be optimized for trading, and include
market makers, trade ordering rules, or alternative threshold
conditions. For example, a broker could authorize a state
transition if 50% of participants confirm.

8.2 Commodity Contracts

Commodity trade is a widespread business activity with
longer timespans and across multiple jurisdictions. For these
deals, it is often useful to take many different events into
consideration and act accordingly.

CoinPool can be used to facilitate these advanced contracts
if every possible event corresponds to a pre-signed transaction
enforcing pool state transition.

8.3 Smart Corporation

A CoinPool instance can represent a corporation, with stake-
holders having different balances and voting rights to im-
plement corporate governance and distribute dividends. A
special balance could be used as a corporate account and
controlled by the majority of the participants.

This idea gets more powerful once combined with other
advanced protocols (e.g., Chaumian banks [2] or vaults [14,
23)).

9 RELATED WORK

First multi-party (N > 2) protocols for Bitcoin were mizers
enhancing privacy by obfuscating coin ownership across many
users [11, 12]. Similarly to CoinPool, they provide confiden-
tiality against an outsider, but not against an in-protocol
spy. Although confidentiality boost is a secondary feature for
CoinPool.

Sidechains [7, 22] scale Bitcoin by locking Bitcoins con-
trolled by an external consensus (e.g., a federation) to autho-
rize state transitions. CoinPool is more trust-minimized than
sidechains, but, unlike sidechains, it is limited by Bitcoin
Script for off-chain activities. Sidechains could use CoinPools
for locking and governing locked Bitcoins.

The Lightning Network [17] aims to increase transaction
throughput by moving most of the activity off the chain
via two-party payment channels. CoinPool builds on similar
scalability ideas while providing better funds velocity at a
cost of higher interactivity.

Channel factories [4] enhance the LN by batching openings
and closings of many channels into one transaction. CoinPool
also builds on the idea of UTXO sharing, but, unlike Channel

factories, CoinPool remains operational after one participant
withdraws from the UTXO.

Joinpool [13] is a more generic UTXO sharing protocol,
which, unlike Channel factories, remains operational after a
user withdraws. CoinPool extends this by offering off-chain
operations and protocol uplifting.

Both Channel factories and Joinpool protocols offer mixing
coins against an external observer, so does CoinPool.

The pooling idea was further advanced by representing
accounts in a Radix tree [21] for witness size reduction. Com-
pared to this construction, CoinPool requires generation more
transactions and interactive setup, while offering a smaller
on-chain footprint and allowing unilateral withdrawals.

This Radix tree was prototyped on pre-signed transactions
without modifications to Bitcoin Script, while OP_CTV [20]
was proposed to reduce construction complexity and risks
associated with pre-signed transactions.

OP.TAPROOT_LEAF UPDATE VERIFY [24] is a
Bitcoin Script extension allowing accumulator-based opera-
tions, similarly to OP_.M ERKLESUB. OP_CAT [15] and
OP_CSFS [16] are two other general-purpose covenant pro-
posals to Bitcoin Script. These proposals may be used to
design pool protocols, although this direction was not thor-
oughly explored.

10 CONCLUSIONS

Lightning Network scales Bitcoin payments via two-party
payment channels and routing, although it may be bounded
in terms of scaling and usability by its design.

We propose CoinPool, a covenant-based payment pool con-
struction, which takes the idea of sharing UTXO ownership
to the next level. In CoinPool, Bitcoin users lock funds in
many accounts within a single UTXO to instantly transact
across the pool without much on-chain footprint; or use their
accounts inside the pool for advanced protocols (e.g., pay-
ment channels), possibly even connected to other CoinPools
or the LN. CoinPool users can withdraw their funds from the
pool at any time.

CoinPool introduces an alternative set of trade-offs: users
get increased funds velocity and use Bitcoin throughput more
efficiently, at the cost of high interactivity required by pool
participants. CoinPool requires modifications to the Bitcoin
protocol.

REFERENCES

[1] Gleb Naumenko Antoine Riard. Time-dilation attacks on the
lightning network, https://arxiv.org/pdf/2006.01418.pdf, 2020.
David Chaum. Blind signatures for untraceable payments. In
David Chaum, Ronald L. Rivest, and Alan T. Sherman, edi-
tors, Advances in Cryptology, pages 199-203, Boston, MA, 1983.
Springer US.

Rusty Russell Christian Decker and Olaoluwa Osun-
tokun. eltoo: A simple layer2 protocol for bitcoin,
https://blockstream.com/eltoo.pdf, 2018.

Christian Decker Conrad Burchert and Roger Watten-
hofer. Scalable funding of bitcoin micropayment chan-
nel networks, https://nakamotoinstitute.org/static/docs/scalable-
funding-of-bitcoin-micropayment-channel-networks.pdf, 2018.
Ben Fisch Dan Boneh, Benedikt Bunz. Batching techniques for
accumulators with applications to iops and stateless blockchains,
https://eprint.iacr.org/2018/1188.pdf, 2018.

2

3

4

5

[6] Thaddeus

(11
(12

(13

(14

15

Dryja. Discreet
https://adiabat.github.io/dlc.pdf, 2017.
Adam Back et al. Enabling blockchain innovations with pegged
sidechains, https://www.blockstream.com/sidechains.pdf, 2014.
Aviv Zohar Jona Harris. Flood & loot: A systemic attack on the
lightning network, https://arxiv.org/pdf/2006.08513.pdf, 2020.
Andrew Poelstra Jonas Nick and Gre-
gory Sanders. Liquid: A bitcoin sidechain,
https://blockstream.com/assets/downloads/pdf/liquid-
whitepaper.pdf, 2020.

Gregory Maxwell. Coincovenants using scip signatures, an amus-
ingly bad idea, https://bitcointalk.org/index.php?topic=278122.0,
2013.

Gregory Maxwell. Coinjoin: Bitcoin privacy for the real world,
https://bitcointalk.org/?topic=279249, 2013.

Gregory Maxwell. Coinswap: Transaction graph disjoint trustless
trading, https://bitcointalk.org/index.php?topic=321228.0, 2013.
Gregory Maxwell. Rolling coinjoin(” joinpool”),
https://gist.github.com/harding/a30864d0315a0cebd7de3732f5bd 8810,
2020.

Malte Moser, Ittay Eyal, and Emin Giin Sirer. How to implement
secure bitcoin vaults, Feb 2016.
Satoshi Nakamoto.

log contracts,

misc changes,

https://github.com/bitcoin/bitcoin/commit/4bd188c4383d6e614e18{79d (23T ¥abidBabyc8Powns.

2010.

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

Russell O’Connor. Cat and schnorr tricks i,
https://www.wpsoftware.net /andrew /blog/cat-and-schnorr-
tricks-i.html, 2021.

Joseph Poon and Thaddeus Dryja. The bitcoin light-
ning network: Scalable off-chain instant payments,
https://lightning.network/lightning-network-paper.pdf, 2016.
Antoine Riard. Pinning: The good, the bad, the ugly,
https://lists.linuxfoundation.org/pipermail /lightning-dev/2020-
june/002758.html, 2020.

Casey Rodarmor. Lightning mints,
https://rodarmor.com/blog/lightning-mints/, 2021.
Jeremy Rubin. Checktemplateverify,

https://github.com/bitcoin/bips/blob/master/bip-
0119.mediawiki, 2020.

Jeremy Rubin. Coinpool, exploring generic payment pools for fun
and privacy, https://lists.linuxfoundation.org/pipermail /bitcoin-
dev/2020-june/017968.html, 2020.

Ruben Somsen. Softchains:
a soft fork proof-of-work

Sidechains
fraud

as

via proofs,

https://gist.github.com/rubensomsen/7ecf7f13dc2496aa7eed8815a02f13d1,

2020.

Jacob Swambo, Spencer Hommel, Bob McElrath, and Bryan
Bishop. Custody protocols using bitcoin vaults, 2020.
Tapleaf_update_verify covenant opcode,
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-
september/019419.html, 2021.

	Abstract
	1 Introduction
	2 Background
	2.1 Bitcoin Transactions
	2.2 Payment channels
	2.3 Off-chain update mechanisms

	3 Off-chain scaling
	3.1 Onboarding scaling
	3.2 Transactional scaling

	4 CoinPool: scalability/security model
	4.1 Enabling any-order exits in a scalable way with OP_MERKLESUB, SIGHASH_ANYPREVOUT and SIGHASH_GROUP
	4.2 Enabling leaf-level payment channels with SIGHASH_ANYPREVOUT

	5 CoinPool Operations
	5.1 Pool Setup
	5.2 Pool Update (off-chain)
	5.3 Pool Withdrawal
	5.4 Pool Snapshot
	5.5 Expanding the pool
	5.6 Optimizations

	6 Uplifting off-chain protocols
	7 Discussion
	7.1 Economic soundness of multi-party Eltoo
	7.2 Off-chain Cancellation of Withdraw Transactions
	7.3 Interactivity requirement
	7.4 Withdraw witness size
	7.5 Dynamic Membership
	7.6 Confidentiality enhancements

	8 CoinPool applications
	8.1 Trading Pools
	8.2 Commodity Contracts
	8.3 Smart Corporation

	9 Related work
	10 Conclusions
	References

